
Evolutionary algorithms

• Simple genetic algorithms 

• Evolutionary Strategies

• Genetic Programming

Partially based on slides by Thomas Bäck



Heuristic Search
SAT solvers, CP solvers, ILP solvers:

find exact solutions to discrete constraint optimization 
problems

can be time consuming
Heuristic solvers:

employ “heuristics”: guidelines for finding good solutions 
quickly

don't find exact solutions
can be much faster
can deal with problems that are numerical and not in a 

“nice” form (eg., linear)



Examples in Fuzzy Logic
When learning a fuzzy classifier from training data 

we need to find:
Parameters of membership functions
Attributes to put in rules

When finding the parameters that maximize the 
output of a fuzzy system, we need to find numerical 
values



Hill-Climbing

Hill-climbing is arguably the simplest heuristic 
algorithm

1. S = arbitrary candidate solution
2. S' = solutions in the neighborhood of S
3. if best solution in S' is not better than S then stop
4. let S be the best solution in S'
5. go to 2.



Neighborhood Search
Important choice in hill-climbing: which 

neighborhoods to consider
Add a small value to each coordinate? Substruct a small 

value from each coordinate?



Large Neighborhood Search
Iteratively select a random 

subset of variables of 
limited size, find an 
optimal assignment for 
these variables, assuming 
the others are fixed
Requires the availability 

of an algorithm to solve 
the intermediate 
problems optimally
(linear programming, 
CP, ..)



Other Well-known
Heuristic Search Strategies
Simulated annealing
Tabu search
Evolutionary algorithms

genetic algorithms
genetic programming
evolutionary strategies

Artificial ants
Particle swarms



Advantages of GAs
Evolution and natural selection has proven to be a 

robust method 

A “black box” approach that can easily be applied to 
many optimization problems

GAs can be easily parallelized and run on multiple 
machines



Some definitions
Population: a collection of solutions for the studied 

(optimization) problem
Individual: a single solution in a GA
Chromosome (genotype): representation for a 

single solution
Gene: part of a chromosome, usually representing a 

variable as part of the solution



Some definitions
Encoding: conversion of a solution to its equivalent 

representation (chromosome)
Decoding: conversion of a chromosome (genotype) 

to its equivalent solution (phenotype)
Fitness: scalar value denoting the suitability of a 

solution
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Genetic Algorithm

Fitness Function

Assess Fitness

Selection

Crossover

Mutation

Increment Generation

Define Initial Population

Parents

Best Individuals
Children



Pseudo code
Initialize population P:

E.g. generate random p solutions

Evaluate solutions in P:
determine for all h ∈ P, Fitness(h)

While terminate is FALSE
Generate new generation P using genetic operators
Evaluate solutions in P

Return solution h ∈ P with the highest Fitness



Termination criteria
Number of generations

(restart GA if best solution is not satisfactory)

Fitness of best individual

Average fitness of population

Difference of best fitness (across generations)

Difference of average fitness (across generations)



Reproduction
Three steps:
Selection
Crossover
Mutation

In GAs, the population size is often kept constant. User 
is free to choose which methods to use for all three 
steps.
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01100
10001
11010
00111
11000
10110

01100
10001
10001
11000
10110
10110

34
48
23
15
41
50

selection

fitnessindividuals

Sum = 211

p = 0.16
p = 0.23
p = 0.11
p = 0.07
p = 0.19
p = 0.24

Cumulative probability: 0.16, 0.39, 0.50, 0.57, 0.76, 1.00



Tournament selection
Select pairs randomly
Fitter individual wins

deterministic
probabilistic

 constant probability of winning
 probability of winning depends on fitness

It is also possible to combine tournament selection with 
roulette-wheel



Crossover
Exchange parts of chromosome with a crossover 

probability (pc is usually about 0.8)
Select crossover points randomly

One-point crossover:
0 1 0 1 1 1 1 1 0 1 1

0 1 1 1 0 1 0 1 1 1 0

crossover point

0 1 0 1 1 1 1 1 1 1 0

0 1 1 1 0 1 0 1 0 1 1



N-point crossover
Select N points for exchanging parts
Exchange multiple parts
Two-point crossover:

0 1 0 1 1 1 1 1 0 1 1

0 1 1 1 0 1 0 1 1 1 0

crossover points

0 1 0 1 0 1 0 1 0 1 1

0 1 1 1 1 1 1 1 1 1 0



Uniform crossover
Exchange bits using a randomly generated mask

0 1 0 1 1 1 1 1 0 1 1

0 1 1 1 0 1 0 1 1 1 0

0 1 0 1 1 1 0 1 0 1 0

0 1 1 1 0 1 1 1 1 1 1

0 1 0 1 0 0 1 0 0 1 1 mask



Mutation
Crossover is used to search the solution space
Mutation is needed to escape from local optima
Introduces genetic diversity
Mutation is rare (pm is about 0.005)

Uniform mutation:

0 1 0 1 1 1 1 1 1 1 0

0 1 0 1 1 1 0 1 1 1 0

mutated bit
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Encoding and decoding

Common coding methods

“standard” binary integer coding

Gray coding (binary)

real valued coding (evolutionary strategies)

tree structures (genetic programming)



Gray Coding

Aim: binary coding of integers such that integers 
x and y for which |x-y|=1 only differ in one bit

Dec  Gray   Binary
 0   000    000
 1   001    001
 2   011    010
 3   010    011
 4   110    100
 5   111    101
 6   101    110
 7   100    111



Gray Coding
Codes for n=1: (i.e., integers 0, 1)
0  1 

Codes for n=2: (i.e., integers 0, 1, 2, 3)
Reflected entries for n=0:

 1 0
Prefix old entries with 0:
00 01
Prefix reflected entries with 1:

 11 10
Codes hence:
00 01 11 10

Codes for n=3: (i.e., integers 0, 1, 2, …, 7)
Reflected entries for n=2:

   10 11 01 00
Codes hence:
000 001 011 010 110 111 101 100
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Gray Coding
Given a “normal” bit representation, how to calculate 

the Gray code?

0
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0
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00
01

00
01
11
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010

000
001
010
011
100
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110
111

A bit flips in the Gray code  iff the bit before it has value 1 in the original code.

bitstring → Gray
10100 → 11110
10101 → 11111
10110 → 11101
11001 → 10101



Gray Coding
Source code in Python for calculating Gray code:

def binaryToGray(num):
return (num >> 1) ^ num



Gray Coding
Given a Gray code, how to calculate a “normal” bit 

representation?

0
1

0
1

00
01

00
01
11
10

000
001
011
010

000
001
010
011
100
101
110
111

A bit flips in the “normal” code (as compared to the Gray code)  iff the bit 
before it has value 1 in the “normal” code.

bitstring → Gray
10100 → 11110
10101 → 11111
10110 → 11101
11001 → 10101



Gray Coding
Gray coding does not avoid that integers far away 

from each other can have similar codes 
00000=0 
10000=31

 Mutation can still change numbers a lot→

Gray coding only ensures that there always is a 
one-bit mutation to transform integer x into integer 
x+1 or x-1.



Constraints
Examples:

“A string of numbers should represent a permutation”
(1,2,3) is valid; (1,1,3) is not

“The sum of numbers should not be lower than a 
threshold”

Possibility 1: fitness function modification
setting fitness of unfeasible solutions to zero

(search may be very inefficient due to unfeasible solutions)
penalty function (negative terms for violated constraints)
barrier function (already penalty if “close to” violation)



Constraints

Possibility 2 (preferred method): special encoding
 GA searches always through allowed solutions
 smaller search space
 ad hoc method, may be difficult to find

Example: permutations (see AI course)
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