
Evolutionary algorithms

• Simple genetic algorithms

• Evolutionary Strategies

• Genetic Programming

Partially based on slides by Thomas Bäck

Heuristic Search
SAT solvers, CP solvers, ILP solvers:

find exact solutions to discrete constraint optimization
problems

can be time consuming
Heuristic solvers:

employ “heuristics”: guidelines for finding good solutions
quickly

don't find exact solutions
can be much faster
can deal with problems that are numerical and not in a

“nice” form (eg., linear)

Examples in Fuzzy Logic
When learning a fuzzy classifier from training data

we need to find:
Parameters of membership functions
Attributes to put in rules

When finding the parameters that maximize the
output of a fuzzy system, we need to find numerical
values

Hill-Climbing

Hill-climbing is arguably the simplest heuristic
algorithm

1. S = arbitrary candidate solution
2. S' = solutions in the neighborhood of S
3. if best solution in S' is not better than S then stop
4. let S be the best solution in S'
5. go to 2.

Neighborhood Search
Important choice in hill-climbing: which

neighborhoods to consider
Add a small value to each coordinate? Substruct a small

value from each coordinate?

Large Neighborhood Search
Iteratively select a random

subset of variables of
limited size, find an
optimal assignment for
these variables, assuming
the others are fixed
Requires the availability

of an algorithm to solve
the intermediate
problems optimally
(linear programming,
CP, ..)

Other Well-known
Heuristic Search Strategies
Simulated annealing
Tabu search
Evolutionary algorithms

genetic algorithms
genetic programming
evolutionary strategies

Artificial ants
Particle swarms

Advantages of GAs
Evolution and natural selection has proven to be a

robust method

A “black box” approach that can easily be applied to
many optimization problems

GAs can be easily parallelized and run on multiple
machines

Some definitions
Population: a collection of solutions for the studied

(optimization) problem
Individual: a single solution in a GA
Chromosome (genotype): representation for a

single solution
Gene: part of a chromosome, usually representing a

variable as part of the solution

Some definitions
Encoding: conversion of a solution to its equivalent

representation (chromosome)
Decoding: conversion of a chromosome (genotype)

to its equivalent solution (phenotype)
Fitness: scalar value denoting the suitability of a

solution

Generation t

1 0 0 0

0 0 1 1

0 1 1 0

0 1 0 1

0 1 0 1

po
p

u
l a

ti
on

x y

gene

chromosome

individual

solution fitness
(2,0)

(1,1)

(0,3)

(1,2)

(1,1)

4

2

3

3

2

Genetic Algorithm

Fitness Function

Assess Fitness

Selection

Crossover

Mutation

Increment Generation

Define Initial Population

Parents

Best Individuals
Children

Pseudo code
Initialize population P:

E.g. generate random p solutions

Evaluate solutions in P:
determine for all h ∈ P, Fitness(h)

While terminate is FALSE
Generate new generation P using genetic operators
Evaluate solutions in P

Return solution h ∈ P with the highest Fitness

Termination criteria
Number of generations

(restart GA if best solution is not satisfactory)

Fitness of best individual

Average fitness of population

Difference of best fitness (across generations)

Difference of average fitness (across generations)

Reproduction
Three steps:
Selection
Crossover
Mutation

In GAs, the population size is often kept constant. User
is free to choose which methods to use for all three
steps.

1
16%

2
23%

3
11%

4
7%

5
19%

6
24%

1
2
3
4
5
6

01100
10001
11010
00111
11000
10110

01100
10001
10001
11000
10110
10110

34
48
23
15
41
50

selection

fitnessindividuals

Sum = 211

p = 0.16
p = 0.23
p = 0.11
p = 0.07
p = 0.19
p = 0.24

Cumulative probability: 0.16, 0.39, 0.50, 0.57, 0.76, 1.00

Tournament selection
Select pairs randomly
Fitter individual wins

deterministic
probabilistic

 constant probability of winning
 probability of winning depends on fitness

It is also possible to combine tournament selection with
roulette-wheel

Crossover
Exchange parts of chromosome with a crossover

probability (pc is usually about 0.8)
Select crossover points randomly

One-point crossover:
0 1 0 1 1 1 1 1 0 1 1

0 1 1 1 0 1 0 1 1 1 0

crossover point

0 1 0 1 1 1 1 1 1 1 0

0 1 1 1 0 1 0 1 0 1 1

N-point crossover
Select N points for exchanging parts
Exchange multiple parts
Two-point crossover:

0 1 0 1 1 1 1 1 0 1 1

0 1 1 1 0 1 0 1 1 1 0

crossover points

0 1 0 1 0 1 0 1 0 1 1

0 1 1 1 1 1 1 1 1 1 0

Uniform crossover
Exchange bits using a randomly generated mask

0 1 0 1 1 1 1 1 0 1 1

0 1 1 1 0 1 0 1 1 1 0

0 1 0 1 1 1 0 1 0 1 0

0 1 1 1 0 1 1 1 1 1 1

0 1 0 1 0 0 1 0 0 1 1 mask

Mutation
Crossover is used to search the solution space
Mutation is needed to escape from local optima
Introduces genetic diversity
Mutation is rare (pm is about 0.005)

Uniform mutation:

0 1 0 1 1 1 1 1 1 1 0

0 1 0 1 1 1 0 1 1 1 0

mutated bit

10010110
01100010
10100100
10011001
01111101

. . .

. . .

. . .

. . .

10010110
01100010
10100100
10011101
01111001

. . .

. . .

. . .

. . .

SelectionSelection CrossoverCrossover MutationMutation

Current
generation

Next
generation

Elitism

reproduction

Encoding and decoding

Common coding methods

“standard” binary integer coding

Gray coding (binary)

real valued coding (evolutionary strategies)

tree structures (genetic programming)

Gray Coding

Aim: binary coding of integers such that integers
x and y for which |x-y|=1 only differ in one bit

Dec Gray Binary
 0 000 000
 1 001 001
 2 011 010
 3 010 011
 4 110 100
 5 111 101
 6 101 110
 7 100 111

Gray Coding
Codes for n=1: (i.e., integers 0, 1)
0 1

Codes for n=2: (i.e., integers 0, 1, 2, 3)
Reflected entries for n=0:

 1 0
Prefix old entries with 0:
00 01
Prefix reflected entries with 1:

 11 10
Codes hence:
00 01 11 10

Codes for n=3: (i.e., integers 0, 1, 2, …, 7)
Reflected entries for n=2:

 10 11 01 00
Codes hence:
000 001 011 010 110 111 101 100

0
1

0
1

00
01

00
01
11
10

000
001
011
010

Gray Coding
Given a “normal” bit representation, how to calculate

the Gray code?

0
1

0
1

00
01

00
01
11
10

000
001
011
010

000
001
010
011
100
101
110
111

A bit flips in the Gray code iff the bit before it has value 1 in the original code.

bitstring → Gray
10100 → 11110
10101 → 11111
10110 → 11101
11001 → 10101

Gray Coding
Source code in Python for calculating Gray code:

def binaryToGray(num):
return (num >> 1) ^ num

Gray Coding
Given a Gray code, how to calculate a “normal” bit

representation?

0
1

0
1

00
01

00
01
11
10

000
001
011
010

000
001
010
011
100
101
110
111

A bit flips in the “normal” code (as compared to the Gray code) iff the bit
before it has value 1 in the “normal” code.

bitstring → Gray
10100 → 11110
10101 → 11111
10110 → 11101
11001 → 10101

Gray Coding
Gray coding does not avoid that integers far away

from each other can have similar codes
00000=0
10000=31

 Mutation can still change numbers a lot→

Gray coding only ensures that there always is a
one-bit mutation to transform integer x into integer
x+1 or x-1.

Constraints
Examples:

“A string of numbers should represent a permutation”
(1,2,3) is valid; (1,1,3) is not

“The sum of numbers should not be lower than a
threshold”

Possibility 1: fitness function modification
setting fitness of unfeasible solutions to zero

(search may be very inefficient due to unfeasible solutions)
penalty function (negative terms for violated constraints)
barrier function (already penalty if “close to” violation)

Constraints

Possibility 2 (preferred method): special encoding
 GA searches always through allowed solutions
 smaller search space
 ad hoc method, may be difficult to find

Example: permutations (see AI course)

	FEM 31001 Computational Intelligence
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Advantages of GAs
	Some definitions
	Slide 12
	GA terminology
	Genetic algorithm
	Pseudo code
	Termination criteria
	Reproduction
	Roulette-wheel selection
	Slide 19
	Tournament selection
	Crossover
	N-point crossover
	Uniform crossover
	Mutation
	GA iteration
	Encoding and decoding
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Handling constraints

