Evolutionary algorithms

Simple genetic algorithms
Evolutionary Strategies

Genetic Programming

Partially based on slides by Thomas Back

Heuristic Search

SAT solvers, CP solvers, ILP solvers:

® find exact solutions to discrete constraint optimization
problems

® can be time consuming

Heuristic solvers:

® employ “heuristics”: guidelines for finding good solutions
quickly

® don't find exact solutions
® can be much faster

® can deal with problems that are numerical and not in a
“nice” form (eg., linear)

Examples in Fuzzy Logic

When learning a fuzzy classifier from training data
we need to find:

® Parameters of membership functions
® Attributes to put in rules

When finding the parameters that maximize the
output of a fuzzy system, we need to find numerical
values

Hill-Climbing

Hill-climbing is arguably the simplest heuristic
algorithm

1. S = arbitrary candidate solution

2. S' = solutions in the neighborhood of S

3. if best solution in S’ is not better than S then stop
4. let S be the best solution in S’

5. go to 2.

Neighborhood Search

Important choice in hill-climbing: which
neighborhoods to consider

® Add a small value to each coordinate? Substruct a small
value from each coordinate?

(x1 + €, 29, ...

(x1 — €, 29,...

e, . T

Large Neighborhood Search

[teratively se.lect a random .
subset of variables of
limited size, find an e
optimal assignment for

. . / /
these variables, assuming (331, T5,. 03, CUn)
the others are fixed

® Requires the availability 7 coey L n)
of an algorithm to solve
the intermedi.ate (33’1’ 3;’2’ :L‘é’ i g;n)
problems optimally
(linear programming,
CE)

~“Other Well-known
Heuristic Search Strategies

Simulated annealing

Tabu search

Evolutionary algorithms
® genetic algorithms

® genetic programming

® evolutionary strategies

Artificial ants

Particle swarms

Advantages of GAs

Evolution and natural selection has proven to be a
robust method

A “black box” approach that can easily be applied to
many optimization problems

GAs can be easily parallelized and run on multiple
machines

Some definitions

Population: a collection of solutions for the studied
(optimization) problem

Individual: a single solution in a GA

Chromosome (genotype): representation for a
single solution

Gene: part of a chromosome, usually representing a
variable as part of the solution

Some definitions

Encoding: conversion of a solution to its equivalent
representation (chromosome)

Decoding: conversion of a chromosome (genotype)

to its equivalent solution (phenotype)

Fitness: scalar value denoting the suitability of a
solution

~GAterminology

Generation t

X solution fitness
individual (2,0 4

0|0

110 (1,1)
01 (0,3)
1|1

1[0

=
=
e
= 4
o
-
.
()
o

(1,2)
(L,1)

_v_l

ene
B

T
chromosome

2

enetic algorithm

Define Initial Population

Increment Generation

'

Fitness Function

Assess Fitness

Selection

Mutation

~

Crossover

- Genetic Algorithm

Pseudo code

Initialize population P:

® E.g. generate random p solutions

Evaluate solutions in P:

® determine for all h L P, Fitness(h)
While terminate is FALSE

® Generate new generation P using genetic operators

® Evaluate solutions in P

Return solution h LI P with the highest Fitness

Termination criteria

Number of generations
(restart GA if best solution is not satisfactory)

Fitness of best individual
Average fitness of population
Difference of best fitness (across generations)

Difference of average fitness (across generations)

Reproduction

Three steps:
Selection
Crossover

Mutation

In GAs, the population size is often kept constant. User
is free to choose which methods to use for all three
steps.

Roulette-wheel selection

16%

6

Roulette-wheel selection

individuals fitness

p=0.16] 01100 34
p=0.23 10001 48

b 01 e Sek’&}

p=0.07| 00111 15
p=0.19| 11000 41
p=024 10110 50

Sum =211
Cumulative probability: 0.16, 0.39, 0.50, 0.57, 0.76, 1.00

Tournament selection

Select pairs randomly

Fitter individual wins
® deterministic
® probabilistic
® constant probability of winning
® probability of winning depends on fitness

It is also possible to combine tournament selection with
roulette-wheel

Crossover

Exchange parts of chromosome with a crossover
probability (p. is usually about 0.8)

Select crossover points randomly
One-point crossovex:
o101 |]1 1]1]1

0/1,0)1 1|1

l crossover point

1111|111

St 2l
=

S A

N-point crossover

Select N points for exchanging parts

Exchange multiple parts
Two-point crossover:

crossover points

141

1

1

1

Uniform crossover

hange bits using a randomly generated mask

1/0/1/0/0/1/0]/0]|1]1 mask

1|1

01
13
1|1

Mutation

Crossover is used to search the solution space
Mutation is needed to escape from local optima

Introduces genetic diversity

Mutation is rare (p,, is about 0.005)
Uniform mutation:

0,10 1/1|1

mutated bit

1001011
01100010
10100100
10011001
1 01111101

Current
generation

)

I} (Setecton][crossove] st I}

N

.

—

reproduction

1
01100010
10100100
10011101
1 01111001

Next
generation

—

S

" Encoding and decoding

—_—

Common coding methods

® “standard” binary integer coding
® Gray coding (binary)
® real valued coding (evolutionary strategies)

® tree structures (genetic programming)

Gray Coding

Aim: binary coding of integers such that integers
x and y for which |x-y|=1 only differ in one bit

Dec Gray Binary
000 000
001 001
011 010
010 011
110 100
111 101
101 110
100 111

~N oy O s WD R O

Gray Coding

Codes for n=1: (i.e., integers o, 1)

Qs & 14

<

Codes for n=2: (i.e., integers o, 1, 2, 3)
Reflected entries for n=o: 00—=000
1 0 — 01— 001
Prefix old entries with o: — 11—+ 011
00 01 — 10— 010
Prefix reflected entries with 1: 10— 110
- 11 10 11— 111

odes hence:

e —e=0]1 —= 101
—=00— 100

Codes for n=3: (i.e., integers o, 1, 2, ..., 7)
Reflected entries for n=2:
10 11 01

Codes hence:
000 001 011 010 110 111 101 100

Gray Coding

Given a “normal” bit representation, how to calculate
the Gray code?

oY v

4 >

& & bitstring — Gray

00— 000 000 10100 — 11110
01— 001 001 10101 - 11111

11--011 010 10110 — 11101

10— 010 011
=rE o o 11001 — 10101

g]] e RO
—=0]1—= 101 110
—=00—= 100 111

A bit flips in the Gray code 1ff the bit before it has value 1 in the original code.

Gray Coding

Source code in Python for calculating Gray code:

def binaryToGray(num):
return (num >> 1) © num

Gray Coding

Given a Gray code, how to calculate a “normal” bit
representation?

5 %

& & bitstring — Gray

00— 000 000 10100 — 11110
01— 001 001 10101 - 11111

11--011 010 10110 — 11101

10— 010 011
e 11001 — 10101

g]] e RO
—=0]1—= 101 110
—=00—= 100 111

A bit flips in the “normal” code (as compared to the Gray code) iff the bit
before it has value 1 in the “normal” code.

Gray Coding

Gray coding does not avoid that integers far away
from each other can have similar codes

00000=0

10000=31

— Mutation can still change numbers a lot

Gray coding only ensures that there always is a
one-bit mutation to transform integer x into integer
X+1 OT X-1.

Constraints

Examples:

® “A string of numbers should represent a permutation”
(1,2,3) is valid; (1,1,3) is not

® “The sum of numbers should not be lower than a

threshold”

Possibility 1: fitness function modification

® setting fitness of unfeasible solutions to zero
(search may be very inefficient due to unfeasible solutions)

® penalty function (negative terms for violated constraints)

® barrier function (already penalty if “close to” violation)

Constraints

Possibility 2 (preferred method): special encoding
® GA searches always through allowed solutions
® smaller search space
® ad hoc method, may be difficult to find

Example: permutations (see Al course)

	FEM 31001 Computational Intelligence
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Advantages of GAs
	Some definitions
	Slide 12
	GA terminology
	Genetic algorithm
	Pseudo code
	Termination criteria
	Reproduction
	Roulette-wheel selection
	Slide 19
	Tournament selection
	Crossover
	N-point crossover
	Uniform crossover
	Mutation
	GA iteration
	Encoding and decoding
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Handling constraints

